The data comprise near-real time (NRT) 2-week rotated buffer (produced by OSPO from several sensors, currently including NOAA-18 and -19, and Metop-A and -B, with ~4hrs latency) and delayed-mode (4-days latency) science quality Reanalysis (RAN; produced at STAR). RAN1 dataset is produced from AVHRR/3s using the NOAA Advanced Clear-Sky Processor for Ocean (ACSPO) v2.40 enterprise system, from 3 afternoon (NOAA-16, -18, -19) and 2 mid-morning satellites (NOAA-17, MetOp-A), two satellites at a time, from 30 Aug 2002 to present. The data are documented in (Ignatov et al., 2016). Work is underway to extend the period covered by RAN1 using AVHRR/2s, initially back to 1996 and eventually to 1981.

The data are reported in hourly granule files in GHRSST Data Specifications v2 (GDS2) format, in swath projection (L2P) and 0.02° gridded L3U (U=uncollated), 24 granules per day, with a total data volume of 0.8GB/day for L2P and 0.2GB/day for L3U, respectively.

ACSPO retrievals are made in full AVHRR swath (~2,800 km). For data assimilation applications (such as production of L4 analyses, especially those that blend satellite and in situ data), correction for the Sensor-Specific Error Statistics (SSES; reported in ACSPO files; Petrenko et al., 2016) biases is strongly recommended.

In each valid water pixel (defined as ocean, sea, lake or river, up to 5km inland; note that in "invalid" pixels, defined as those with >5km inland, fill values are reported), the following layers are reported in both L2P and L3U: SSTs derived using multi-channel SST (MCSST; night) and Non-Linear SST (NLSST; day) algorithms (Petrenko et al., 2014); ACSPO clear-sky mask (ACSM; provided in each pixel as part of l2p_flags; Petrenko et al., 2010); SSES bias and standard deviation (Petrenko et al., 2016); NCEP wind speed; and ACSPO SST minus reference (Canadian Met Centre L4 SST). For L2P, brightness temperatures (BTs) in M12, 15, and 16 are also reported, for those users interested in direct "radiance assimilation" (e.g., NOAA NCEP, NASA GMAO).

Only ACSM "confidently clear" pixels (equivalent to GDS2 "quality level"=5; QLs are also reported for each pixel) should be used. The ACSM also provides day/night, land, ice, twilight, and glint flags. Note that users of ACSPO data have the flexibility to ignore the ACSM, derive their own clear-sky mask, and use BTs and SSTs in those pixels. They may also ignore ACSPO SST, and derive their own SSTs from the original BTs.

Both L2P and L3U SSTs are monitored and validated against in situ data (Xu and Ignatov, 2014) in SQUAM (Dash et al., 2010) and ARMS (Ding et al., 2017) systems, and BTs are monitored in MICROS (Liang and Ignatov, 2011).


Key Description
Platform/Sensor Afternoon:
NOAA-16 / AVHRR-3 (30 Aug 2002 - 06 Jun 2005)
NOAA-18 / AVHRR-3 (07 Jun 2005 - 21 Feb 2009)
NOAA-19 / AVHRR-3 (22 Feb 2009 - present)
NOAA-17 / AVHRR-3 (30 Aug 2002 22 Nov 2006)
MetOp-A / AVHRR-3 (23 Nov 2006 - present)
Measurement Measurement Oceans > Sea Surface Temperature > Sub-skinSST
DOI 10.3390/rs6040315
Sample Filename
Dataset Type Open
Processing Level L2P and L3U
Spatial Coverage Global
Temporal Coverage NRT L2P/L3U: 2-week rotated buffer (4hrs latency)
RAN1 L2P/L3U: 30 Aug 2002 - present (4days latency)
Resolution L2P: 4km @Nadir; ~25km @swath edge
L3U: 0.02°
Projection L2P: Satellite native swath (WGS84)
L3U: Equal-grid 0.02°
Latency NRT: 4 hours
RAN: 4 days
Swath Width ~2,800 km
Sample Frequency 2 scan lines per 1 second
Temporal Repeat Twice Daily
Orbital Period 101 Minutes
Orbit Various Sun-synchronous
PM NOAA-16/18/19: initially launched into 2am/pm orbits, drift in time
Mid-AM NOAA-17: initially launched into 10am/pm orbit, drifts in time
Mid-AM Metop-A/B: stable 9:30am/pm orbits
Data Provider Creator: NOAA STAR
Release Place: College Park, MD, USA
Release Date: 2016-Apr-30
Formats NetCDF (GDS2)

Data Access

[Please acknowledge "NOAA CoastWatch/OceanWatch" when you use data from our site and cite the particular dataset DOI as appropriate.]


(♦ - non-government website)

Data Citation

    The ACSPO AVHRR FRAC data are provided by NOAA STAR. We strongly recommend contacting NOAA SST team led by A. Ignatov before the data are used for any publication or presentation.